

Markov subshifts and partial representation of \mathbb{F}_n

Danilo Royer*

Abstract. In this paper we fix a set Λ^* of positive elements of the free group \mathbb{F}_n (e.g. the set of finite words occurring in a Markov subshift) as well as n partial isometries on a Hilbert space H. Based on these we define a map $S: \mathbb{F}_n \to \mathcal{L}(H)$ which we prove to be a partial representation of \mathbb{F}_n on H under certain conditions studied by Matsumoto.

Keywords: Markov subshift, partial representation.

Mathematical subject classification: 47D99, 37B10.

1 Introduction

Considering a Markov subshift on an alphabet $\{g_1, \ldots, g_n\}$, R. Exel proved in [3] that n partial isometries on a Hilbert space H, satisfying the corresponding Cuntz–Krieger relations, give rise to a partial representation of the free group \mathbb{F}_n on H, that is, a map $S: \mathbb{F}_n \longrightarrow \mathcal{L}(H)$, satisfing $S(t^{-1}) = S(t)^*$ and $S(tr)S(r^{-1}) = S(t)S(r)S(r^{-1})$ for all r, t in \mathbb{F}_n .

In this work we fix a set Λ^* of positive elements of \mathbb{F}_n which, among other requirements is assumed to be closed under sub-words, and we take a set $\{S_1, \ldots, S_n\}$ of partial isometries on H. We define a map $S: \mathbb{F}_n \longrightarrow \mathcal{L}(H)$ by $S(r_1 \ldots r_k) = S(r_1) \ldots S(r_k)$, where $S(r_i) = S_j$ if $r_i = g_j$, $S(r_i) = S_j^*$ if $r_i = g_i^{-1}$ and $r = r_1 \ldots r_k$ is in reduced form.

Under certain conditions studied by Matsumoto in [1], we prove that the map S is a partial representation of \mathbb{F}_n on H. Since Matsumoto's conditions generalize the Cuntz-Krieger relations our result is a generalization of Exel's result mentioned above.

This paper is based on the author's Masters thesis at the Federal University of Santa Catarina under the supervision of Ruy Exel.

Received 5 September 2003.

^{*}Supported by Capes.

2 Partial Representations of \mathbb{F}_n

Let us consider the Free Group \mathbb{F}_n generated by a set of n elements, $G = \{g_1, \ldots, g_n\}$. The elements of \mathbb{F}_n can be written in the form $r = r_1 \ldots r_k$ where each $r_i \in G \cup G^{-1}$. We say that r is in reduced form if $r_i \neq r_{i+1}^{-1}$, for each i. Two elements $r = r_1 \ldots r_k$ and $s = s_1 \ldots s_l$ of \mathbb{F}_n , in reduced form, are equal if and only if l = k and $r_i = s_i$, for all i. In this way, each element, in reduced form, have unique representation and we define its length by the number of components, that is, if $r = r_1 \ldots r_k$ is in reduced form then r have length k, wich will be denoted by |r| = k. A element $r = r_1 \ldots r_k$ of \mathbb{F}_n , in reduced form, is called a positive element if $r_i \in G$, for all i, and the set of all positive elements will be called P. We consider e a element of e.

Let us fix a set $\Lambda^* \subseteq P$ with the following properties:

- $e \in \Lambda^*$,
- $G = \{g_1, \ldots, g_n\} \subseteq \Lambda^*$,
- Λ^* is closed under sub-words, that is, if $\nu = \nu_1 \dots \nu_k \in \Lambda^*$ then each element of the form $\nu_i \dots \nu_{i+j}$ with $i = 1 \dots k$, $j \in \mathbb{N}$ is a element of Λ^* .

For all $\mu \in \Lambda^*$ we define the following sets:

$$L_{\mu}^{1} = \{g_{j} \in G | j = 1, \dots, n, \ \mu g_{j} \notin \Lambda^{*} \},$$

$$L^k_{\mu} = \{ \nu = \nu_1 \dots \nu_k \in \Lambda^* | \mu \nu_1 \dots \nu_{k-1} \in \Lambda^*, \mu \nu \notin \Lambda^* \}, \quad \forall k \in \mathbb{N}.$$

Lemma 1. Let $\mu \in \Lambda^*$ and $r, s \in P$. If vr = v's, where $v \in L^k_{\mu}$ and $v' \in L^l_{\mu}$, then v = v'.

Proof. Suppose by contradiction that $v \neq v'$. Then $|v| \neq |v'|$, because otherwise, $v_1 \dots v_k r = v'_1 \dots v'_k s$, from where it follows that v = v'. Without loss of generality suppose |v| > l, write $v = v_1 \dots v_l \dots v_k$ and $v' = v'_1 \dots v'_l$. Since $v_1 \dots v_l \dots v_k r = v r = v' s = v'_1 \dots v'_l s$, then $v_1 \dots v_l = v'_1 \dots v'_l$, and therefore $v = v' v_{l+1} \dots v_k$. Since $v' \in L^l_\mu$, by definition of L^l_μ , $\mu v' \notin \Lambda^*$, hence $\mu v_1 \dots v_{k-1} = \mu v' v_{l+1} \dots v_{k-1} \notin \Lambda^*$. That is a contradiction, because $v \in L^k_\mu$ and so v = v'.

Let us consider a Hilbert space H and a set of partial isometries $\{S_1, \ldots, S_n\} \subseteq \mathcal{L}(H)$. Recall that S_i is a partial isometry if $S_i S_i^* S_i = S_i$.

Define a map

$$S: \mathbb{F}_n \longrightarrow \mathcal{L}(H)$$

$$r = r_1 \dots r_k \mapsto S(r_1) \dots S(r_k)$$

where r is in reduced form, $S(r_i) = S_j$ if $r_i = g_j$ and $S(r_i) = S_j^*$ if $r_i = g_j^{-1}$. By convention, S(e) = I, where I is the identity operator on H. In this way, for all $r \in \mathbb{F}_n$ we have an operator $S(r) \in \mathcal{L}(H)$. This operator will also be called S_r . We will suppose that our set of partial isometries $\{S_1, \ldots, S_n\} \subseteq \mathcal{L}(H)$ generated a map S which satisfies:

$$(M_1) \sum_{i=1}^n S_i S_i^* = I;$$

 (M_2) For all μ and ν in Λ^* the operators $S_{\mu}S_{\mu}^*$ and $S_{\nu}^*S_{\nu}$ commute;

$$(M_3) \ I - S_i^* S_i = \sum_{k=1}^{\infty} \sum_{\nu \in L_i^k} S_{\nu} S_{\nu}^*, i = 1, \dots, n.$$

Note that for all i, $S_i S_i^*$ is idempotent and self-adjoint, and so a projection. By (M_1) , $\sum_{i=1}^n S_i S_i^*$ is a projection and therefore $S_i S_i^*$ and $S_j S_j^*$ are orthogonal, for all $i \neq j$. So

$$S_i^* S_j = (S_i^* S_i S_i^*)(S_j S_i^* S_j) = S_i^* (S_i S_i^* S_j S_i^*) S_j = 0$$

whenever $i \neq j$.

Lemma 2. For all $\mu \in \Lambda^*$, $S_{\mu} = S_{\mu}S_{\mu}^*S_{\mu}$.

Proof. The proof will be by induction on $|\mu|$. For $|\mu| = 1$, $S_{\mu} = S_{\mu}S_{\mu}^*S_{\mu}$ by hypothesis. Suppose $S_{\mu} = S_{\mu}S_{\mu}^*S_{\mu}$ for all $\mu \in \Lambda^*$ with $|\mu| = k$, and consider $\nu \in \Lambda^*$, with $|\nu| = k + 1$. Then $\nu = \alpha g_i$, with $|\alpha| = k$, and

$$S_{\nu}S_{\nu}^{*}S_{\nu} = S_{\alpha g_{j}}S_{\alpha g_{j}}^{*}S_{\alpha g_{j}} = S_{\alpha}S_{g_{j}}S_{g_{j}}^{*}S_{\alpha}^{*}S_{\alpha}S_{g_{j}} =$$

$$= S_{\alpha}S_{\alpha}^{*}S_{\alpha}S_{g_{j}}S_{g_{j}}^{*}S_{g_{j}} = S_{\alpha}S_{g_{j}} = S_{\nu}.$$

Lemma 3. Let $\alpha \in P$ and $\nu \in \Lambda^*$.

a) If
$$|\alpha| \ge |\nu|$$
 then $S_{\nu}S_{\nu}^*S_{\alpha} = \begin{cases} S_{\alpha} & \text{if } \alpha = \nu r \text{ for some } r \in P \\ 0 & \text{otherwise} \end{cases}$

b) If
$$|\alpha| < |\nu|$$
 then $S_{\nu}S_{\nu}^*S_{\alpha} = \begin{cases} S_{\nu}S_r^* & \text{if } \nu = \alpha r \text{ for some } r \in P \\ 0 & \text{otherwise} \end{cases}$

Proof.

a) Supposing that there exists r in P such that $\alpha = \nu r$, we have

$$S_{\nu}S_{\nu}^{*}S_{\alpha} = S_{\nu}S_{\nu}^{*}S_{\nu r} = S_{\nu}S_{\nu}^{*}S_{\nu}S_{r} = S_{\nu}S_{r} = S_{\alpha}.$$

On the other hand, if $\alpha \neq \nu r$ for all $r \in P$, write $\alpha = \alpha_1 \dots \alpha_l \dots \alpha_k$, $\nu = \nu_1 \dots \nu_l$ and take the smallest index i such that $\alpha_i \neq \nu_i$. Then we have $\alpha_1 \dots \alpha_{i-1} = \nu_1 \dots \nu_{i-1}$, and so

$$\begin{split} S_{\nu}S_{\nu}^{*}S_{\alpha} &= S_{\nu_{1}...\nu_{i-1}\nu_{i}...\nu_{l}}S_{\nu_{1}...\nu_{i-1}\nu_{i}...\nu_{l}}^{*}S_{\alpha_{1}...\alpha_{i-1}\alpha_{i}...\alpha_{k}} = \\ &= S_{\nu_{1}...\nu_{i-1}}S_{\nu_{i}...\nu_{l}}S_{\nu_{i}...\nu_{l}}^{*}S_{\nu_{1}...\nu_{i-1}}^{*}S_{\nu_{1}...\nu_{i-1}}S_{\alpha_{1}...\alpha_{k}} = \\ &= S_{\nu_{1}...\nu_{i-1}}S_{\nu_{1}...\nu_{i-1}}^{*}S_{\nu_{1}...\nu_{i-1}}^{*}S_{\nu_{i}...\nu_{l}}S_{\nu_{i}...\nu_{l}}^{*}S_{\alpha_{i}...\alpha_{k}} = 0 \end{split}$$

because $S_{\nu_i}^* S_{\alpha_i} = 0$.

b) Suppose $v = \alpha r$ for some $r \in P$. Then

$$S_{\nu}S_{\nu}^{*}S_{\alpha} = S_{\alpha r}S_{\alpha r}^{*}S_{\alpha} = S_{\alpha}S_{r}S_{r}^{*}S_{\alpha}^{*}S_{\alpha} =$$

$$= S_{\alpha}S_{\alpha}^{*}S_{\alpha}S_{r}S_{r}^{*} = S_{\alpha}S_{r}S_{r}^{*} = S_{\alpha r}S_{r}^{*} = S_{\nu}S_{r}^{*}.$$

If $v \neq \alpha r$, for all $r \in P$ as in (a), take the smallest index i such that $v_i \neq \alpha_i$. Then $v_1 \dots v_{i-1} = \alpha_1 \dots \alpha_{i-1}$ and

$$\begin{split} S_{\nu}S_{\nu}^{*}S_{\alpha} &= S_{\nu_{1}...\nu_{i-1}\nu_{i}...\nu_{k}}S_{\nu_{1}...\nu_{i-1}\nu_{i}...\nu_{k}}^{*}S_{\alpha_{1}...\alpha_{i-1}\alpha_{i}...\alpha_{l}} = \\ &= S_{\nu_{1}...\nu_{i-1}}S_{\nu_{i}...\nu_{k}}S_{\nu_{i}...\nu_{k}}^{*}S_{\nu_{1}...\nu_{i-1}}^{*}S_{\nu_{1}...\nu_{i-1}}S_{\alpha_{i}...\alpha_{l}} = \\ &= S_{\nu_{1}...\nu_{i-1}}S_{\nu_{1}...\nu_{i-1}}^{*}S_{\nu_{1}...\nu_{i-1}}S_{\nu_{1}...\nu_{k}}S_{\nu_{i}...\nu_{k}}^{*}S_{\alpha_{i}...\alpha_{l}} = 0 \end{split}$$

because $S_{v_i}^* S_{\alpha_i} = 0$.

Theorem 1. If $v \in P \setminus \Lambda^*$ then $S_v = 0$.

Proof. Write $v = g_i \alpha$, and in this way,

$$S_{\nu}^{*}S_{\nu} = S_{\alpha}^{*}S_{g_{j}}^{*}S_{g_{j}}S_{\alpha} = S_{\alpha}^{*}S_{\alpha} - \sum_{k=1}^{\infty} \sum_{\mu \in L_{g_{j}}^{k}} S_{\alpha}^{*}S_{\mu}S_{\mu}^{*}S_{\alpha}.$$

We will analyse the summands of $\sum\limits_{k=1}^{\infty}\sum\limits_{\mu\in L_{g_j}^k}S_{\alpha}^*S_{\mu}S_{\mu}^*S_{\alpha}$ in the following way:

Case 1: $|\mu| > |\alpha|$

By Lemma 3, $S_{\mu}S_{\mu}^{*}S_{\alpha} \neq 0$ only if $\mu = \alpha r$, for some $r \in P$. We will show that there exists no such r. Suppose $\mu \in L_{g_{j}}^{k}$ is such that $\mu = \alpha r$, with |r| = l. By definition of $L_{g_{j}}^{k}$, $g_{j}\mu_{1} \dots \mu_{k-1} \in \Lambda^{*}$, but $g_{j}\mu_{1} \dots \mu_{k-1} = g_{j}\alpha r_{1} \dots r_{l-1}$, and so $\nu = g_{j}\alpha \in \Lambda^{*}$. This is a contradiction, because we are supposing $\nu \notin \Lambda^{*}$. Therefore $\mu \neq \alpha r$, for all $r \in P$, and so, by Lemma 3, $S_{\alpha}^{*}S_{\mu}S_{\alpha}^{*}S_{\alpha} = S_{\alpha}^{*}(S_{\mu}S_{\alpha}^{*}S_{\alpha}) = 0$ for all μ with $|\mu| > |\alpha|$.

Case 2: $|\mu| \leq |\alpha|$

By Lemma 3, $S_{\mu}S_{\mu}^*S_{\alpha} \neq 0$, only if $\alpha = \mu r$, for some r em P, and by Lemma 1 if there exists such $\mu \in \cup L_{g_j}^k$, it is unique. In this case we have by Lemma 3 that $S_{\alpha}^*S_{\mu}S_{\mu}^*S_{\alpha} = S_{\alpha}^*(S_{\mu}S_{\mu}^*S_{\alpha}) = S_{\alpha}^*S_{\alpha}$.

In this way, $S_{\nu}^*S_{\nu}=zS_{\alpha}^*S_{\alpha}$, where z=0 if there exists $\mu\in\bigcup_{k\in\mathbb{N}}L_{g_j}^k$ such that $\alpha=\mu r$ for some $r\in P$, and z=1 otherwise.

Write $\nu = \nu_1 \dots \nu_k$ and take the smallest index i such that $\nu_{i+1} \dots \nu_k \in \Lambda^*$. So,

$$S_{\nu}^* S_{\nu} = z_1 S_{\nu_2 \dots \nu_k}^* S_{\nu_2 \dots \nu_k} = \dots = z_1 \dots z_{i-1} S_{\nu_i \dots \nu_k}^* S_{\nu_i \dots \nu_k},$$

where z_i are 0 or 1. We will show that $S_{\nu_i...\nu_k}^* S_{\nu_i...\nu_k} = 0$. Since $\nu_i...\nu_k \notin \Lambda^*$, by case 1 and case 2 above, we need to show that there exist some $\mu \in \bigcup_{k \in \mathbb{N}} L_{\nu_i}^k$ such that $\nu_{i+1}...\nu_k = \mu r$ for some $r \in P$.

Take the index j such that $v_i \dots v_j \in \Lambda^*$ but $v_i \dots v_j v_{j+1} \notin \Lambda^*$. Such index exists because $v_i \in \Lambda^*$ and $v_i \dots v_k \notin \Lambda^*$. Moreover, $v_{i+1} \dots v_{j+1} \in \Lambda^*$ because $v_{i+1} \dots v_k \in \Lambda^*$, and so, $v_{i+1} \dots v_{j+1} \in L_{v_i}^{j+1-i}$. Thereby $S_{v_i \dots v_k}^* S_{v_i \dots v_k} = 0$, and so $S_v^* S_v = 0$, in other words, $S_v = 0$.

Observe that if $r = r_1 \dots r_k$ is in reduced form, with $r_i \in G^{-1}$ and $r_{i+1} \in G$, then $S(r_i r_{i+1}) = S(r_i) S(r_{i+1}) = 0$, from where S(r) = 0. Also, if $r = r_1 \dots r_k$ and $s = s_1 \dots s_l$ are elements of \mathbb{F}_n in reduced form and $r_k \neq s_1^{-1}$, then the reduced form of r_s is $r_1 \dots r_k s_1 \dots s_l$, and so $S(r_s) = S(r) S(s)$ by definition of S.

Definition 1. Given a group \mathbb{G} and a Hilbert space H, a map $S : \mathbb{G} \to \mathcal{L}(H)$ is a partial representation of the group \mathbb{G} on H if:

 P_1) S(e) = I, where e is the neutral element of \mathbb{G} and I is the identity operator on H,

$$P_2$$
) $S(t^{-1}) = S(t)^*, \forall t \in \mathbb{G}$,

$$P_3$$
) $S(t)S(r)S(r^{-1}) = S(tr)S(r^{-1}), \forall t, r \in \mathbb{G}$,

Theorem 2. If the map $S : \mathbb{F}_n \to \mathcal{L}(H)$ defined before satisfies M_1, M_2 and M_3 , then S is a partial representation of the group \mathbb{F}_n on H.

Proof. Property P_1 is trivial. The proof of P_2 will be by induction on |t|. If |t| = 1, the equality between $S(t^{-1})$ and $S(t^*)$ is obviously true. Suppose $S(t^{-1}) = S(t^*)$ for all $t \in \mathbb{F}_n$ with |t| = k. Take $t \in \mathbb{F}_n$ with |t| = k + 1 and write $t = \tilde{t}x$, where $|\tilde{t}| = k$. Using the induction hypothesis and the fact that the equality is true for |x| = 1,

$$S(t^{-1}) = S((\tilde{t}x)^{-1}) = S(x^{-1}\tilde{t}^{-1}) = S(x^{-1})S(\tilde{t}^{-1})$$

= $S(x)^*S(\tilde{t})^* = (S(\tilde{t})S(x))^* = S(\tilde{t}x)^* = S(t)^*.$

To verify property P_3 we will prove the following:

Claim. For all r in \mathbb{F}_n and t in $G \cup G^{-1}$, $E(r) = S(r)S(r)^*$ and $E(t) = S(t)S(t)^*$ commute.

If $r = r_1 \dots r_k$ where r is in its reduced form, with $r_i \in G^{-1}$ and $r_{i+1} \in G$ for some i, then S(r) = 0 and so the claim is trivial. Therefore let $r = \alpha \beta^{-1}$, where r is in reduced form and $\alpha, \beta \in P$. If $\beta \notin \Lambda^*$, by Theorem 1, $S_{\beta} = 0$ from where we again see that the claim follows. Thus let us consider $\beta \in \Lambda^*$.

Case 1: If $t \in G$, that is, $t = g_j$, for some j.

a) $|\alpha| \neq 0$.

Write $\alpha = \alpha_1 \dots \alpha_l$. If $\alpha_1 \neq g_j$, then $S(g_j)^*S(\alpha) = 0$ and so E(t)E(r) = 0 = E(r)E(t). If $\alpha_1 = g_j$ we have

$$S(\alpha)^* S(g_j) S(g_j)^* = S(\alpha_2 \dots \alpha_l)^* S(\alpha_1)^* S(g_j) S(g_j)^*$$

$$= S(\alpha_2 \dots \alpha_l)^* S(\alpha_1)^* S(\alpha_1) S(\alpha_1)^* = S(\alpha_2 \dots \alpha_l)^* S(\alpha_1)^*$$

$$= (S(\alpha_1) S(\alpha_2 \dots \alpha_k))^* = S(\alpha)^*$$

and similarly $S(g_j)S(g_j)^*S(\alpha) = S(\alpha)$. It follows that E(t) and E(r) commute.

b) $|\alpha| = 0$.

We have $r = \beta^{-1}$. Since $\beta \in \Lambda^*$, using M_2 ,

$$E(r)E(t) = S(r)S(r)^*S(t)S(t)^* = S(\beta)^*S(\beta)S(g_j)S(g_j)^*$$

= $S(g_j)S(g_j)^*S(\beta)^*S(\beta) = S(t)S(t)^*S(r)S(r)^* = E(t)E(r).$

Case 2: If $t \in G^{-1}$, namely, $t = g_i^{-1}$, with $g_j \in G$.

Note that

$$\begin{split} E(r)E(t) &= E(r)S_tS_t^* = E(r)S_{g_j}^*S_{g_j} = E(r)\left(I - \sum_{k=1}^{\infty} \sum_{\mu \in L_{g_j}^k} S_{\mu}S_{\mu}^*\right) = \\ &= E(r) - E(r)\left(\sum_{k=1}^{\infty} \sum_{\mu \in L_{g_j}^k} S_{\mu}S_{\mu}^*\right) \end{split}$$

and similarly,

$$E(t)E(r) = S_{g_j}^* S_{g_j} E(r) = E(r) - \left(\sum_{k=1}^{\infty} \sum_{\mu \in L_{g_j}^k} S_{\mu} S_{\mu}^* \right) E(r).$$

To prove that E(t) and E(r) commute, it is enough to show that

$$E(r)S_{\mu}S_{\mu}^* = S_{\mu}S_{\mu}^*E(r) \quad \forall \mu \in L_{g_i}^k, \ \forall k \in \mathbb{N}.$$

- a) $|\alpha| \neq 0$.
 - i) $|\alpha| \ge |\mu|$. By Lemma 3, if $\alpha = \mu s$ for some s in P then $S_{\alpha}^* S_{\mu} S_{\mu}^* = S_{\alpha}^*$. Therefore,

$$E(r)S_{\mu}S_{\mu}^{*} = S_{\alpha}S_{\beta}^{*}S_{\beta}S_{\alpha}^{*}S_{\mu}S_{\mu}^{*} = S_{\alpha}S_{\beta}^{*}S_{\beta}S_{\alpha}^{*} = E(r),$$

and similarly $S_{\mu}S_{\mu}^{*}E(r)=E(r)$, and this proves that $E(r)S_{\mu}S_{\mu}^{*}=S_{\mu}S_{\mu}^{*}E(r)$. Also by Lemma 3, if $\alpha\neq\mu s$ for all $s\in P$, then $S_{\alpha}^{*}S_{\mu}S_{\mu}^{*}=0=S_{\mu}S_{\mu}^{*}S_{\alpha}$ and also in this case E(r) and $S_{\mu}S_{\mu}^{*}$ commute.

ii) $|\alpha| < |\mu|$. By Lemma 3, if $\mu \neq \alpha s \ \forall s \in P$, then $S_{\alpha}^* S_{\mu} S_{\mu}^* = 0 = S_{\mu} S_{\mu}^* S_{\alpha}$, from where the equallity follows. If $\mu = \alpha s$ for some $s \in P$, also by Lemma 3, $S_{\alpha}^* S_{\mu} S_{\mu}^* = S_s S_{\mu}^*$ and $S_{\mu} S_{\mu}^* S_{\alpha} = S_{\mu} S_s^*$, from where

$$E(r)S_{\mu}S_{\mu}^{*} = S_{\alpha}S_{\beta}^{*}S_{\beta}S_{\alpha}^{*}S_{\mu}S_{\mu}^{*} = S_{\alpha}S_{\beta}^{*}S_{\beta}S_{s}S_{\mu}^{*} = S_{\alpha}S_{\beta}^{*}S_{\beta}S_{s}S_{s}^{*}S_{\alpha}^{*},$$

and

$$S_{\mu}S_{\mu}^{*}E(r) = S_{\mu}S_{\mu}^{*}S_{\alpha}S_{\beta}^{*}S_{\beta}S_{\alpha}^{*} = S_{\mu}S_{s}^{*}S_{\beta}^{*}S_{\beta}S_{\alpha}^{*} = S_{\alpha}S_{s}S_{s}^{*}S_{\beta}^{*}S_{\beta}S_{\alpha}^{*}.$$

Since $\beta \in \Lambda^{*}$, by M_{2} ,

$$S_s S_s^* S_\beta^* S_\beta = S_\beta^* S_\beta S_s S_s^*,$$

and this shows that $E(r)S_{\mu}S_{\mu}^{*} = S_{\mu}S_{\mu}^{*}E(r)$.

b) $|\alpha| = 0$ Since $\beta \in \Lambda^*$, the equality between $E(r)S_{\mu}S_{\mu}^*$ and $S_{\mu}S_{\mu}^*E(r)$ follows from M_2 .

This proves our claim. Let us now return to the proof of P_3 , that is,

$$S(t)S(r)S(r^{-1}) = S(tr)S(r^{-1}), \forall t, r \in \mathbb{F}_n.$$

To do this we use induction on |t|+|r|. The equality is obvious if |t|+|r|=1. Suppose the equality true for all $t, r \in \mathbb{F}_n$ such that |t|+|r| < k. Take $t, r \in \mathbb{F}_n$, with |t|+|r|=k, write $t=\tilde{t}x, r=y\tilde{r}$, with $x,y\in G\cup G^{-1}$. If $y\neq x^{-1}$, we have S(tr)=S(t)S(r), from where $S(tr)S(r^{-1})=S(t)S(r)S(r^{-1})$. Let us consider the case $x=y^{-1}$.

$$\begin{split} S(t)S(r)S(r^{-1}) &= S(\tilde{t}x)S(y\tilde{r})S((y\tilde{r})^{-1}) = \\ &= S(\tilde{t})S(x)S(y)S(\tilde{r})S(\tilde{r}^{-1})S(y^{-1}) = \\ &= S(\tilde{t})S(x)S(x^{-1})S(\tilde{r})S(\tilde{r}^{-1})S(x). \end{split}$$

Using the claim and the fact that S(x) is a partial isometry,

$$S(\tilde{t})S(x)S(x^{-1})S(\tilde{r})S(\tilde{r}^{-1})S(x) = S(\tilde{t})S(\tilde{r})S(\tilde{r}^{-1})S(x)S(x^{-1})S(x) =$$

$$= S(\tilde{t})S(\tilde{r})S(\tilde{r}^{-1})S(x)$$

and by the induction hypothesis,

$$S(\tilde{t})S(\tilde{r})S(\tilde{r}^{-1})S(x) = S(\tilde{t}\tilde{r})S(\tilde{r}^{-1})S(x).$$

On the other hand,

$$S(tr)S(r^{-1}) = S(\tilde{t}xy\tilde{r})S((y\tilde{r})^{-1}) =$$

= $S(\tilde{t}\tilde{r})S(\tilde{r}^{-1}y^{-1}) = S(\tilde{t}\tilde{r})S(\tilde{r}^{-1})S(x).$

This concludes the proof of P_3 , and also of the theorem.

References

- [1] K. Matsumoto, *Relations Among Generators of C*-Álgebras Associated with Subshifts*. Internat. J. Math. (1999), 385–405.
- [2] M. Hall, Jr. *Theory of Groups*. Chelsea Publishing Company, New York, (1973).
- [3] R. Exel, Amenability for Fell bundles. J. reine angew. Math. 492 (1997), 41–73.

Danilo Royer

Departamento de Matemática Universidade Federal de Santa Catarina 88040-900 Florianópolis SC BRASIL

E-mail: royer@mtm.ufsc.br